Monday, April 30, 2012

Are children today really suffering nature deficit disorder (TM)?

Children working in a London hosiery mill
around the turn of the century. Did they have
"Nature-Deficit Disorder (TM)"? Source.
Maybe you've heard of the scourge plaguing modern-day children, the one known as Nature Deficit Disorder (TM). You won't find it in any of the standard diagnostic manuals used to identify true disorders, but the "disorder" arises, so the story goes, as a result of keeping children inside for fear of their safety and "stranger danger," loss of natural surroundings in cities and neighborhoods, and increased attractions indoors that prevent spending time outdoors. 

This "disorder" is supposed to be an effect of modern times, the combined effects of controlling and fearful parents along with the irresistible screen-based attractions indoors. As a result of this "disorder," children can allegedly be susceptible to any number of ills, including less respect for and understanding of nature, depression, shorter life spans, and obesity.

Concerns like these, it seems, have arisen with the advent of each new technological advance. One wonders if the invention of the wheel raised alarms that children might move through their natural surroundings too quickly to take them in. At any rate, while the person who invented this disorder, Richard Louv, has actually trademarked the term, it doesn't seem to have made a big splash in the scientific literature. Given that studies are lacking--i.e., completely absent--about "nature deficit disorder," one thing we can do is take a look back at how children lived before the technological age to see if their indoor-outdoor lives and exposure to the natural world were substantially different.

Go far enough back in human history, and of course, we all spent a lot of time outside. But how did we spend our time with the rise of civilization? Children in agrarian societies then and now worked from dawn to dusk as part of the family to put food on the table. In such a position, they certainly had no lack of exposure to nature, although how much they appreciated that endless grind could be in question. That is, of course, if they didn't die in infancy or early childhood, as a large percentage of them did in spite of all that fresh air and time outside.

But what happened with children and how they spent their time with the rise of towns and cities? In early times, many of those cities were walled compounds, not necessarily hives of scum and villainy, but generally stacks upon stacks of living quarters existing solely for functionality. Nature? Outside the walls, where danger--including the most extreme kind of "stranger danger"--lurked. Cities that lacked walls, as ancient Rome did for a long period, still were more focused on efficient crowding and function far more than on nature, with only the wealthy having gardens, the modern equivalent of today's back yards. In general, there were people, there were buildings, and there were more people. Not wildly different from, say, Manhattan today--except for that whole natural jewel known as Central Park.

This piling on of people, brick, mortar, more people, and wood continued for children who didn't live in agrarian societies. With the Industrial Revolution, what may have really been a nature deficit disorder for a child living, in, say, London, became a genuine threat to health. While they certainly didn't have television to keep them indoors, they also didn't have child labor laws. The result was that children who once might have been at work at age 4 in a field were now at work at age 3 or 4 in a factory, putting in 12 or so hours a day before stepping out into the coal-smoked, animal-dung-scented air of the city. 

Child labor wasn't something confined to Industrial Revolution Britain, and it continues today, both for agriculture and industry. I do wonder if the children harvesting oranges in Brazil feel any closer to nature than the children weaving carpets in Egypt. Likely, there are deficits more profound for them to worry about.

The trigger for this overview of whether or not things have really changed over recorded history in terms of children's exposure to the natural world is this series of articles in the New York Times (NYT). In case you hit the paywall, it is the NYT's "Room for Debate" series and includes four articles addressing whether or not nature shows and films connect people to the natural world or "contribute to 'nature deficit disorder'" by keeping people glued to screens instead of being outside.

Louv, the coiner of "Nature deficit disorder TM", is one of the four contributors to the debate. He argues that viewing nature documentaries can inspire us to go outside. He also thinks many of us grew up watching "Lassie" instead of the "Gilligan's Island" my generation watched, but perhaps there's not a huge difference between Timmy in the well and Gilligan in the lagoon and consequent outdoor inspiration. At any rate, Louv does argue in favor of viewing nature shows, although from a very first-world perspective (like the Romans and gardens, we don't all have back yards, for example). 

Perhaps the least-defensible perspective is the argument that Ming (Frances) Kuo, an associate professor of natural resources and environmental sciences, has to offer. She compares nature documentaries to "junk food" and offers the obvious: They're no comparison for the real world. For some reason, she implies that someone has argued that when you have access to TV, you don't need access to nature, saying, "Scientists have been discovering that even in societies where just about everyone has access to a TV, Internet, or both, having access to nature matters." I honestly don't think anyone's ever argued against that.

Does "nature deficit disorder" exist and is indoor screen time with nature documentaries to blame? In addition to the historical observations I've made above suggesting that children from previous eras haven't necessarily been wandering the glades and meadows like wayward pixies, all I have to offer is a bit of anecdata, and I'm curious about the experiences of others. Historical comparisons suggest that city-dwelling children are no more deficient nature-wise today than city-dwelling children of yesteryear. But do nature documentaries help... or hinder?

When I was young and watching too much "Sesame Street," "Gilligan's Island," and "Star Trek," the only nature show available to me was "Wild Kingdom" (Mutual of Omaha's, natch). Other than that, we had nothing unless a periodic NOVA episode came on public television. 

I was interested in science and nature, but acquiring knowledge outside of what I read in a book was difficult. As a resident of the great metropolis of Waco, Tex., yes, I had a natural world to explore, but let's face it: The primates there weren't that interesting, and bluebonnets get you only so far. I had no access to real-life live-motion visuals, auditory inputs, or information delivered in any form except what I could read in a book. Talk about sensory limitations.

These days, my children have a nature documentary library that extends to dozens and dozens of choices. And they have watched every single one, some of them repeatedly. That's not to say that they don't also have dozens of well-thumbed field guides and encyclopedias covering fossils, dinosaurs, plants, bugs, sharks, rocks--the usual obsessions of the young who are interested in nature. Our "movie nights" often kick off with a nature documentary, and our pick of choice will frequently be one involving narration from David Attenborough. My children want to be David Attenborough--so do I, for that matter--and I can't recall ever really having that feeling about Marlin Perkins or Jim Fowler

And the upshot of that access to an expanse of nature documentaries I never had is that their knowledge of nature is practically encyclopedic. I'm the biologist in the family--or at least the one who has the biology degree--but my children often know more than I do about a specific plant or animal or ecosystem or area of the world, all thanks to these documentaries they watch. And when we're outside, they extrapolate what they've learned, generalizing it to all kinds of local natural situations.

Do children today just need to be moving around more, somewhere, somehow? Oh, yes. But watching nature shows hasn't exacerbated some kind of "nature deficit" my children might have, Minecraft obsessed as they are. And these documentaries haven't replaced "real" nature with televised nature. Instead, the shows have expanded on and given context to the nature my children encounter, wherever that is--city, country, farm, sky, ocean, parking lot, grocery store, or even inside their own home, which is currently the scene of a sci-fi-like moth infestation that has triggered much excitement. I'd hazard that far from causing a deficit, nature shows have given my children a nature literacy that was unknown in previous generations. 

What is your take on nature deficits and nature documentaries?

By Emily Willingham, DXS managing editor 

Friday, April 27, 2012

Science, health, medical news freaking you out? Do the Double X Double-Take first

Handy short-form version.
Have you seen the headlines? Skip them
You've probably seen a lot of headlines lately about autism and various behaviors, ways of being, or "toxins" that, the headlines tell you, are "linked" to it. Maybe you're considering having a child and are mentally tallying up the various risk factors you have as a parent. Perhaps you have a child with autism and are now looking back, loaded with guilt that you ate high-fructose corn syrup or were overweight or too old or too near a freeway or not something enough that led to your child's autism. Maybe you're an autistic adult who's getting a little tired of reading in these stories about how you don't exist or how using these "risk factors" might help the world reduce the number of people who are like you.

Here's the bottom line: No one knows precisely what causes the extremely diverse developmental difference we call autism. Research from around the world suggests a strong genetic component [PDF]. What headlines in the United States call an "epidemic" is, in all likelihood, largely attributable to expanded diagnostic inclusion, better identification, and, ironically, greater awareness of autism. In countries that have been able to assess overall population prevalence, such as the UK, rates seem to have held steady at about 1% for decades, which is about the current levels now identified among 8-year-olds in the United States. 

What anyone needs when it comes to headlines honking about a "link" to a specific condition is a mental checklist of what the article--and whatever research underlies it--is really saying. Previously, we brought you Real vs Fake Science: How to tell them apart. Now we bring you our Double X Double-Take checklist. Use it when you read any story about scientific research and human health, medicine, biology, or genetics.

The Double X Double-Take: What to do when reading science in the news
1. Skip the headline. Headlines are often misleading, at best, and can be wildly inaccurate. Forget about the headline. Pretend you never even saw the headline.

2. What is the basis of the article? Science news originates from several places. Often it's a scientific paper. These papers come in several varieties. The ones that report a real study--lots of people or mice or flies, lots of data, lots of analysis, a hypothesis tested, statistics done--is considered "original research." Those papers are the only ones that are genuinely original scientific studies. Words to watch for--terms that suggest no original research at all--are "review," "editorial," "perspective," "commentary," "case study" (these typically involve one or only a handful of cases, so no statistical analysis), and "meta-analysis." None of these represents original findings from a scientific study. All but the last two are opinion. Also watch for "scientific meeting" and "conference." That means that this information was presented without peer review at a scientific meeting. It hasn't been vetted in any way.

3. Look at the words in the article. If what you're reading contains words like "link," "association," "correlation," or "risk," then what the article is describing is a mathematical association between one thing (e.g., autism) and another (e.g., eating ice cream). It is likely not describing a biological connection between the two. In fact, popular articles seem to very rarely even cover scientific research that homes in on the biological connections. Why? Because these findings usually come in little bits and pieces that over time--often quite a bit of time--build into a larger picture showing a biological pathway by which Variable 1 leads to Outcome A. That's not generally a process that's particularly newsworthy, and the pathways can be both too specific and extremely confusing.

4. Look at the original source of the information. Google is your friend. Is the original source a scientific journal? At the very least, especially for original research, the abstract will be freely available. A news story based on a journal paper should provide a link to that abstract, but many, many news outlets do not do this--a huge disservice to the interested, engaged reader. At any rate, the article probably includes the name of a paper author and the journal of publication, and a quick Google search on both terms along with the subject (e.g., autism) will often find you the paper. If all you find is a news release about the paper--at outlets like ScienceDaily or PhysOrg--you are reading marketing materials. Period. And if there is no mention of publication in a journal, be very, very cautious in your interpretation of what's being reported.

5. Remember that every single person involved in what you're reading has a dog in the hunt. The news outlet wants clicks. For that reason, the reporter needs clicks. The researchers probably want attention to their research. The institutions where the researchers do their research want attention, prestige, and money. A Website may be trying to scare you into buying what they're selling. Some people are not above using "sexy" science topics to achieve all of the above. Caveat lector

6. Ask a scientist. Twitter abounds with scientists and sciencey types who may be able to evaluate an article for you. I receive daily requests via email, Facebook, and Twitter for exactly that assistance, and I'm glad to provide it. Seriously, ask a scientist. You'll find it hard to get us to shut up. We do science because we really, really like it. It sure ain't for the money. [Edited to add: But see also an important caveat and an important suggestion from Maggie Koerth-Baker over at Boing Boing and, as David Bradley has noted over at ScienceBase, always remember #5 on this list when applying #6.] 


Case Study
Lately, everyone seems to be using "autism" as a way to draw eyeballs to their work. Below, I'm giving my own case study of exactly that phenomenon as an example of how to apply this checklist.

1. Headline: "Ten chemicals most likely to cause autism and learning disabilities" and "Could autism be caused by one of these 10 chemicals?" Double X Double-Take 1: Skip the headline. Check. Especially advisable as there is not one iota of information about "cause" involved here.

2. What is the basis of the articleEditorialConference. In other words, those 10 chemicals aren't something researchers identified in careful studies as having a link to autism but instead are a list of suspects the editorial writers derived, a list that they'd developed two years ago at the mentioned conference. 

3. Look at the words in the articles. Suspected. Suggesting a link. In other words, what you're reading below those headlines does not involve studies linking anything to autism. Instead, it's based on an editorial listing 10 compounds [PDF] that the editorial authors suspect might have something to do with autism (NB: Both linked stories completely gloss over the fact that most experts attribute the rise in autism diagnoses to changing and expanded diagnostic criteria, a shift in diagnosis from other categories to autism, and greater recognition and awareness--i.e., not to genetic changes or environmental factors. The editorial does the same). The authors do not provide citations for studies that link each chemical cited to autism itself, and the editorial itself is not focused on autism, per se, but on "neurodevelopmental" derailments in general.

4. Look at the original source of information. The source of the articles is an editorial, as noted. But one of these articles also provides a link to an actual research paper. The paper doesn't even address any of the "top 10" chemicals listed but instead is about cigarette smoking. News stories about this study describe it as linking smoking during pregnancy and autism. Yet the study abstract states that they did not identify a link, saying "We found a null association between maternal smoking and pregnancy in ASDs and the possibility of an association with a higher-functioning ASD subgroup was suggested." In other words: No link between smoking and autism. But the headlines and how the articles are written would lead you to believe otherwise. 

5. Remember that every single person involved has a dog in this hunt. Read with a critical eye. Ask yourself, what are people saying vs what real support exists for their assertions? Who stands to gain and in what way from having this information publicized? Think about the current culture--does the article or the research drag in "hot" topics (autism, obesity, fats, high-fructose corn syrup, "toxins," Kim Kardashian) without any real basis for doing so? 

6. Ask a scientist. Why, yes, I am a scientist, so I'll respond. My field of research for 10 years happens to have been endocrine-disrupting compounds. I've seen literally one drop of a compound dissolved in a trillion drops of solvent shift development of a turtle from male to female. I've seen the negative embryonic effects of pesticides and an over-the-counter antihistamine on penile development in mice. I know well the literature that runs to the thousands of pages indicating that we've got a lot of chemicals around us and in us that can have profound influences during sensitive periods of development, depending on timing, dose, species, and what other compounds may be involved. Endocrine disruptors or "toxins" are a complex group with complex interactions and effects and can't be treated as a monolith any more than autism should be.

What I also know is that synthetic endocrine-disruptors have been around for more than a century and that natural ones for far, far longer. Do I think that the "top 10" chemicals require closer investigation and regulation? Yes. But not because I think they're causative in some autism "epidemic." We've got sufficiently compelling evidence of their harm already without trying to use "autism" as a marketing tool to draw attention to them. Just as a couple of examples: If coal-burning pollution (i.e., mercury) were causative in autism, I'd expect some evidence of high rates in, say, Victorian London, where the average household burned 11 tons of coal a year. If modern lead exposures were causative, I'd be expecting records from notoriously lead-burdened ancient Rome containing descriptions of the autism epidemic that surely took it over. 

Bottom line: We've got plenty of reasons for concern about the developmental effects of the compounds on this list. But we've got very limited reasons to make autism a focal point for testing them. Using the Double X Double-Take checklist helps demonstrate that.

By Emily Willingham, DXS managing editor 

Wednesday, April 25, 2012

Good Deeds, Good Science: Hope & Heroes Children’s Cancer Fund

A few days ago, I received an email from my friend HelenJonsen about a fundraising effort that is very near and dear to her heart.  Helen and her family are volunteering for the 3rd Annual Hope & Heroes Walk to show their support for the clinic that helped her own daughter, in her journey with cancer.  Taking place on April 29th, 2012 in Manhattan’s Clinton Cove Park, this fundraiser is to help ensure that the unique clinical care programs and cutting edge research funded by Hope & Heroes will continue.

Specifically associated with Columbia University’s Herbert Irving Child & Adolescent Oncology Center, Hope & Heroes boasts the ultimate NY start.  In 1997, Beth, a teenage Hodgkin’s Disease patient, decided to write the then NY Yankees first baseman, Tino Martinez.  Tino responded to Beth’s letter and invited her watch the Yankees during their spring training.  Tino and Beth “hit” it off, and their friendship inspired Tino to become more proactive in the lives of other young cancer patients by pledging a donation for every RBI he made.  The NY sports scene quickly caught wind of this, and a local sportswriter, Mike Lupica, dubbed this effort “Hope and Heroes.”

While the cancer center had been accepting donations for the purpose of supporting the innovative programs started by its director, Dr. Michael Weiner, the effort had finally been given a name.  But, it wasn’t until 2002 when Hope & Heroes filed for a 501(c)(3), giving this charity an official stamp. 

According to Jeremy Shatan, the acting Executive Director of Hope & Heroes, the clinic sees about 100-150 new patients each year and about 5,000 – 7,000 total patient visits.  This number includes patients who are currently receiving treatment as well as those who have recovered but are still being monitored.

The money donated to Hope & Heroes Children’s Cancer Fund is used, in part, to finance many special programs that would otherwise be impossible.  Benefitting both the young patients and their families, these programs include the use of complementary medicine folded in to an often harsh regimen of surgery, chemotherapy, and/or radiation.  In addition, Hope & Heroes also helps to provide emotional counseling to those in need, as well as allow these young cancer patients to participate in translational research studies, which opens the possibility for novel treatments.

The Hope & Heroes Children’s Cancer Fund has forged a permanent place in the hearts of many, including Helen and her family.  We at Double X Science find this effort to beyond a “good deed.”  Please show support for this organization by donating.  Because you never know when a kid will need it.

To donate to the 3rd Annual Hope & Heroes Walk, go here.

Monday, April 23, 2012

Notable Women in Science: Modern Chemists

Our next installment of notable women in science brings us to chemists. Many of these women were born in the early part of the 20th century and forged their paths in tough times. All are still inspiring others today. Presented in no particular order:

Catherine Clarke Fenselau is a pioneer in mass spectrometryBorn in 1939, her interested in science was apparent before her 10th grade. She was encouraged to attend a women’s college, which at the time gave what she called “a special opportunity for serious-minded young women.” She graduated from Bryn Mawr with her A.B. in chemistry in 1961. Her graduate work at Stanford introduced her to the technology she would become known for, receiving her Ph.D. in analytical chemistry in 1965. Dr. Fenselau and her husband took positions at the Johns Hopkins University Medical School, at which time she had two sons. Johns Hopkins was under a mandate to accept female students and have female faculty at the time. Dr. Fenselau was made aware of the disparity of the treatment of male and female faculty, when in the 1970s the equal opportunity laws came into effect and she received an unexplained 25% raise. Her research resided in mass spectrometry, specifically in its use in biology. She became known as an anti-cancer researcher. Dr. Fenselau spoke often to chemists about feminism and goals, such as equal pay, opening closed career opportunities to women, and achieving the bonuses often only awarded to men. She has worked as an editor on several scientific journals. Some of her awards include the Garvan Medal, Maryland Chemist Award, and NIH Merit Award. Having  proper help at work and at home, and having supportive mentors and spouse has helped her achieve her success.

Elizabeth Amy Kreiser Weisburger is considered a real-lifemedical sleuth. Born in 1924, Dr. Weisburger was one of 10 children and schooled at home for her early education. She received her B.S. in chemistry, cum laude, Phi Alpha Epsilon from Lebanon Valley College. She received her Ph.D. in organic chemistry in 1947 from the University of Cincinnati. She married and had three children. Her research has caused her to be proclaimed a pioneer in the field of chemical carcinogenesis. She balanced her busy life of working at the NCI, committee work, giving lectures, attending meetings, writing and reviewing papers while caring for children with the aid of housekeepers and nursery childcare. Some of her awards include the Garvan Medal and the HillebrandPrize. Her life philosophy is summed up with “Don’t take life so seriously; you’ll never get out of it alive.”

Helen M. Free, photo from the ACS
Helen M. Free is a major contributor to science and science education. Born in 1923, Ms. Free attended the College of Wooster, graduating with honors and a B.S. in 1944. In 1978, she earned a M.A. from Central Michigan University. In the meantime, she worked as a chemist at Miles Laboratories. She developed clinical effective and easy to use laboratory tests. She worked her way up through the company and also held an adjunct professor position at Indiana University, South Bend. Ms. Free has used her time to be active in professional societies and has served as president for the American Association for Clinical Chemistry and the American Chemical Society. Her awards include the Garvan Medal, a Distinguished Alumni Award from Wooster, and is the first recipient ofthe Public Outreach Award bearing her name.

Jeanette Grasselli Brown is an industry researcher and director. Born in 1929, she graduated summa cum laude with her B.S. from Ohio University in 1950 and received her M.S. in 1958 from Western Reserve University. She worked at Standard Oil of Ohio (now BP of America), and became the first woman director of corporate research there. She has received numerous awards including the Garvan Medal, Ohio Women’s Hall of Fame, and the Fisher Award in Analytical Chemistry. She has published 75 papers in scientific journals, written 9 books, and received 7 honorary Doctorate of Science degrees. She is an activist for the future of women in science.

Jean’ne Marie Shreeve is an important fluorine chemist. Born in 1933, she encountered sexism through her mother’s inability to be employed despite her training as a schoolteacher. Dr. Shreeve graduated with a B.A. from Montana State University in 1953, followed by an M.S. in 1956 from the University of Minnesota, and a Ph.D. in inorganic chemistry in 1961 from the University of Washington. After graduating, she worked her way through the professorial ranks at the University of Idaho. Besides her own research, Dr. Shreeve has devoted herself to educating other chemists. Some of her awards include U.S. Ramsey Fellow, Alfred P. Sloan Fellow, and Garvan Medal.

Joyce Jacobon Kaufman by Smithsonian Institution 
Joyce Jacobson Kaufman is distinguished in many fields. Born in 1929, she was reading before the age of 2 and was a voracious reader as a child. This led to her reading the biography of Marie Curie, which inspired her to be a chemist. Dr. Kaufman received her B.S., M.A., and Ph.D. in physical chemistry from Johns Hopkins University in 1949, 1959, and 1960, respectively. She married and had a daughter. Her research in the application of quantum mechanics to chemistry, biology, and medicine led to her renown in several fields. She has also spent much time in service positions. Her awards include the Martin Company Gold Medal for Outstanding Scientific Accomplishments (received 3 times), the Garvan Medal, and honored as one of ten Outstanding Women in the State of Maryland.

Madeleine M. Joullie is known for elegant research and inspirational teachingBorn in 1927, her early life in Brazil was overly-protective, so her father encouraged her to attend school in the U.S.A. She received her B.Sc. from Simmons College in 1949, and her M.Sc. and Ph.D. in chemistry in 1950 and 1953, respectively, from the University of Pennsylvania. She then worked her way through the professorial ranks at the University of Pennsylvania. Initially, only the women graduate students would work with her, and they were few and far between. She has explored many research avenues over the course of her career. Her awards include the Garvan Medal, the American Cyanamid Faculty Award, the Henry HillAward, and the Lindback Award for Distinguished Teaching.

Marjorie Caserio is a researcher, educator, author, andacademic administrator. Born in 1929, she entered university with the goal of becoming a podiatrist in order to generic income. She received several rejections from colleges due to her gender, and eventually was accepted to be the only woman in her class. She received her B.S. from Chelsea College, University of London in 1950 and an M.A. and Ph.D from Bryn Mawr in 1951 and 1956. Dr. Caserio is co-author of one of the most popular organic chemistry textbooks in the chemistry during the 1960s and 1970s. Her awards include the Garvan Medal and John S. Guggenheim Foundation Fellow.

Mary Lowe Good has won several awards and is a public servant. Born in 1931, she was supported in her aspirations by her parents. She received her B.S. in 1950 from the University of Central Arkansas, which was then the Arkansas State Teachers College. She went on to receive her M.S. and Ph.D. in inorganic and radiochemistry from the University of Arkansas in 1953 and 1955. Her career began in academic, but an appointment to the National Science Foundation by President Carter changed the course of her career. She served the International Union of Pure and Applied Chemistry, and president of the American Chemical Society and Zonta International Foundation. Some of her awards include Garvan Medal, CharlesLathrop Parsons Award, and 18 honorary doctorates.

Ruth Mary Roan Benerito is an academic and government scientistBorn in 1916, she began college at the age of 15 at Sophie Newcomb College, the women’s college of Tulane and received her B.S. in 1935. She received her M.S. from Tulane University in 1938, which she worked half-time while working another job at the same time. She taught at Tulane and its colleges before going to the University of Chicago to get her Ph.D. in 1948 in physical chemistry, again working on a part-time basis. Her career oscillated between academia and industry, earning her a large number of awards, including the Federal Women’s Award, the Southern Chemist Award, and inducted as a Fellow into the American Institute of Chemists and Iota Sigma Pi.  

The Garvan Medal is an award from the American Chemical Society to recognize distinguished service to chemistry by women chemists.

The Maryland Chemist Award recognizes and honors its members for outstanding achievement in the fields of chemistry.

The NIH Merit Award is a symbol of scientific achievement in the research community.

The Hillebrand Prize is awarded for original contributions to the science of chemistry.

The Distinguished Alumni Award from Wooster is presented annually to alumni who have distinguished themselves in one of more of the following area: professional career; service to humanity; and service to Wooster.

Helen M. Free Award recognizes outstanding achievements in the field of public outreach. 

Ohio Women’s Hall of Fame provides public recognition of contributions made to the growth and progress of Ohio and the nation.

The Fisher Award in Analytical Chemistry recognizes outstanding contributions to the field of analytical chemistry.

U.S. Ramsey Fellow is no longer offered.

Alfred P. Sloan Fellow is awarded to scientists and scholars of outstanding promise.

Outstanding Women in the State of Maryland awards women under the age of 40 for their achievements already made in an early career. 

The American Cyanamid Faculty Award  

The Henry Hill Award recognizes distinguished service to professionalism. 

John S. Guggenheim Foundation Fellow is awarded for demonstrating outstanding scholarship.

Charles Lathrop Parsons Award recognizes outstanding public service. 

The American Institute of Chemists advances the chemical sciences by establishing high professional standards of practice and to emphasize the professional, ethical, economic, and social status of its members for the benefit of society as a whole.

Iota Sigma Pi is a national honor society for women in chemistry.

Much of the information for this post came from the book Notable Women in the Physical Sciences: A Biographical Dictionary edited by Benjamin F. Shearer and Barbara S. Shearer. 

Adrienne M Roehrich, Double X Science Chemistry Editor

Friday, April 20, 2012

Everyday Science: Making Light in Electronics

By DXS Physics Editor Matthew Francis 

A while back, I wrote about one of the most common ways of making electric light: fluorescent bulbs. Understanding fluorescent lights requires quantum mechanics! While a lot of quantum physics seems pretty removed from our daily lives, it's essential to most of our modern technology. In fact, reading what I'm writing requires quantum mechanics, since you are using a computer (maybe a handheld computer like an iPad or smart phone, but it's still a computer) or a printout from a computer.

Modern electronics, including computers and phones, depend on semiconductors. Conductors (like the copper wire in power cords) let electricity flow easily, but semiconductors conduct electricity more reluctantly—but that very reluctance lets us control the flow. While they can't sustain large currents like conductors can, we can tinker with the chemistry of semiconductors to make them conduct electricity in very precise ways. One of those ways lets semiconductor devices make light: those are known as light-emitting diodes, or LEDs.

You likely have many LEDs in your home: they're common as indicator lights on appliances, and you might even have LED light bulbs. While they're pretty expensive right now, the price of LED lights is getting lower all the time, and they have major advantages over both incandescent (old-style) light bulbs and fluorescents. They won't burn out even as quickly as fluorescent lights (themselves longer-lived than incandescents), and consume less energy. Since they are based on solids rather than gases, they're not going to break easily, either! But how do they work?

The Electrons in the Band

When I described fluorescent lights in my earlier post, I described how atoms have distinct energy levels inside them, and light is produced when electrons move between those energy levels. Fluorescent lights use gases (generally mercury vapor), so the atoms are relatively widely separated. In solids, including semiconductors, atoms are tightly packed together, forming bonds that don't break without high pressures or temperatures. In fact, they may also share electrons with each other; a particularly dramatic example of this is in metals, where the electrons in the highest energy levels of the atoms all form a gas that surrounds the atoms. That's why metals are such good conductors—a little push from a battery or other power source makes those electrons flow in one direction (on average at least), much as a fan creates currents in the air.

Semiconductors are a bit more complicated: their electrons are loosely bound, but still stuck to their host atoms. The way physicists understand this is something known as the band model: just like atoms have energy levels, solids have energy bands. Low energies correspond to electrons stuck to their atoms, which can't leave; we call these closed shell electrons (for reasons that aren't important for this particular post). Moderate energies are known as valence electrons, which stay put ordinarily, but can be persuaded to move if given the right incentive. Finally, high energies are conduction electrons, which aren't tied to a particular atom at all; as their name suggests, they are the ones that carry electric current.

Whether a solid conducts electricity depends on its band structure, and the size of the energy barrier in between the bands, which is called a gap. Large gaps require large energies for electrons to jump them, while smaller gaps are more easily jumped. Conductors have negligible gaps between their valence and conduction bands, while insulators have huge gaps. Semiconductors lie in between; adding extra atoms to a semiconductor can make the gap smaller (a process known as "doping", which sometimes makes describing it unintentionally funny).

Cars and Roads and Electrons

At low temperatures, semiconductors may not conduct electricity at all, since no electrons can jump the gap into the conduction band. Either warming them up a bit or applying an external electric current gives the electrons the energy they need to move into the conduction band.

I was pondering analogies about band structures to help us understand them, and thought of this one based on cars and roads. Think of closed shells as like parking spaces along a road: cars (which stand in for electrons) are stationary. Valence bands are the slow lane, which is clogged with traffic, so the cars technically can move, but don't. The conduction bands are fast lanes: cars can really zip, but there's a traffic barrier between the slow lane and fast lane. (That barrier is the weakest part of my analogy, so remember that we should be thinking of a barrier as something that can be traversed under some conditions but not others.)

One more complication: there are two types of semiconductors, known as n-type and p-type. In n-type, just a few electrons (cars) have access to the conduction band (fast lane) at a time, but in p-type, enough electrons get in to leave holes in the valence band. Applying a current to the semiconductor shifts another valence electron into the hole, but that leaves another hole, and so it looks like the hole is moving! In fact, physicists refer to this as "hole conduction", which also sounds odd if you're not used to it.

Now we're finally ready to understand LEDs. If you join an n-type semiconductor to a p-type semiconductor, you make something known as a diode. (The prefix di- refers to the number two. If you join three semiconductors, you get a transistor of either the pnp or npn types, depending on the order you use.) The bands (lanes) don't line up perfectly at the junction: the conduction band in the n-type is generally only slightly higher than the valence band of the p-type, so just a little nudge is needed to move electrons across. This means when they reach the junction between the materials, electrons from the n-type semiconductor can fill the holes on the p-type, which is a decrease in energy. Just as in individual atoms, moving from a higher energy level to a lower energy level makes a photon—and that's where the LE in the D comes from!

LEDs tend to produce very pure colors, rather than the mixture of colors our eyes perceive as white light. To create LED light bulbs, generally blue LEDs are coated with a phosphorescent material, much like the kind used in fluorescent bulbs. Unlike fluorescents, though, there's no gas involved, and less heat is lost (though there is still a little bit). Together these factors make LED light bulbs longer-lasting and more efficient even than fluorescents, though currently they are far more expensive.

Despite how common LEDs and other semiconductors are, they're considered fairly advanced physics. But guess what: if I did my job right, you should understand LED physics now! What is often thought of as "advanced" is really everyday science, and it's a part of how quantum mechanics (with all its electrons and fascinating interactions on the microscopic level) has helped create our modern world.

Wednesday, April 18, 2012

Double Xpression: Darlene Cavalier of Science Cheerleader and SciStarter

Darlene Cavalier (source)

Darlene Cavalier (Twitter) is the hard-working and seemingly tireless founder of Science Cheerleader and SciStarter. She has held executive positions at Walt Disney Publishing and worked at Discover Magazine for more than 10 years. Darlene incorporated her experience and knowledge in serving as the prinicple investigator of a $1.5 million grant from the National Science Foundation to promote basic research through partnerships with Disney and ABC TV and also has collaborated with the NSF, NBC Sports, and the NFL to produce the Science of NFL Football series. She holds a master’s degree from the University of Pennsylvania where she studied the role of the citizen in science and is herself a former Philadelphia 76ers cheerleader. In addition, she is a writer and senior adviser to Discover Magazine. You can find her full biography here.

On top of all of that, she is also mother to four children. You might be able to blame them for the two-day stomach flu Darlene was just getting over when she talked with Double X Science Managing Editor Emily Willingham about why women pursue professional cheerleading (hint: it’s much more about passion than pay), why cheerleader stereotypes are “bunk,” and why even if Science Cheerleader doesn’t lead all little girls into science, it leaves them with a message about being secure in who they are.

DXS: First, can you give me a quick overview of what your scientific background is and your current connection to science?
A: So I have no formal science degree. My connection to science is that I work and continue to work at Discover magazine. I worked there as business development coordinator, and that’s how I became reintroduced to science. I became a fan of science later in life. After working at Discover for a couple of years and having some children [Cavalier is the mother of four children], I wondered if there was a more significant role for someone like me without a formal science degree. My role at Discover had become curating science on behalf of the magazine. How do we get average public to move in the direction of science literacy?

I went to grad school at the University of Pennsylvania to look at those issues. When I met with an advisor (there), he recommended that I go for a masters in liberal arts, which made sense to me at the time. They created a curriculum for me. Most was in the history and sociology of science and some was in school of education. Piecing all of this together was a turning point for me in my life both prof and personally, I started to learn about these citizen scientists to engage nonscientific members of the public in real scientific research.

I saw huge gaps in getting people to move in that direction. Other countries were enabling citizens to take part in conversations about science policy on national levels. The U.S. didn’t have mechanism for that. That was one gap I saw. Another was people weren’t getting involved in citizen science projects…(they were) hard to find and scattered all over websites. It was a mechanism problem, not philosophical or societal. In grad school, I created a matchmaking site of all citizen science projects I was coming across. I decided to make that database public for people to add their projects, and made it searchable. There were no cheerleaders involved in science cheerleaders when I started the blog…it was about the citizen science projects and reopening this agency for public input. (It was not about) cheerleaders specifically.
DXS: So how did you end up incorporating the cheerleader aspect?
A: That was basically a fun way of using my background--it is surprising to people that I was a (Philadelphia) 76ers cheerleader. I kept it secret for long time at Discover, fearing I wouldn’t be taken seriously. I wish I hadn’t attempted (to keep it) secret; when it was “exposed” at Discover people were great about it. They thought it was pretty neat. So I became more comfortable in that role. I wanted to do a tongue-in-cheek look at this when I was starting the blog that this site really is for everyone. Citizen science projects are for everyone; it doesn’t matter if even a quote–unquote “ditzy blonde cheerleader” can do it, surely the scientists could figure it out, and the politicians.

(When the concept of Science Cheerleader really took off), we thought, “We’re on to something.” Most people loved it. Criticism came from feminist science bloggers, which I totally understand…I learned something there, too… (this idea of), “these women aren’t scientists, what are they doing?” Then I started getting emails from actual NFL NBA cheerleaders, (telling me) “I’m getting PhD in chemistry,” (and saw it as) a great way to merge two parts of my life. I could hardly believe it. I never even had thought to ask cheerleaders if they were studying any of the STEM fields.

It became cyclical. The founder of the U.S. Science and Engineering Festival called and asked Science Cheerleader to come to that festival and perform. I had to tell him I’d never met them. We got a grant from the Burroughs Wellcome fund to cover travel for 11 science cheerleaders to come to Washington and perform. They had awesome outfits, speaking roles. It was more or less an experiment. Amazing performers against a science theme routine and incredible public spokespeople.  Applying their talents of being enthusiastic about their team to science and tech careers. They were a huge hit at the festival. 

We left each one speak their own language. They’re very diverse. It helped to have that diverse makeup and watching them talk to little kids. Little girls would come up to them, almost like when you see Cinderella, would want their autographs, to touch their uniforms, feel their pompoms. It was a great opportunity to say, “We love cheerleading, but in the daytime I make cars, I’m what you call an engineer.” Some of the dads and the moms were more attracted to the team (the cheerleaders) represented, and they learned that no cheerleader makes a living on 35 bucks a game…they have professions.

We started to realize we were challenging stereotypes of scientists, cheerleaders, engineers. We have so many science cheerleaders in the database, working now with the NFL and NBA, (that) when a local event is happening, I can contact science cheerleaders in the Boston area tell them, and they can go if they want. They don’t have talking points … they say what they want to say. A Patriots cheerleader says cheerleading was great for her professional career, standards were super high for her in college. (You have to maintain) a GPA to be cheerleader and athlete, (and that) was helpful.

DXS: And you’ve encountered some criticism from feminists or women in science. How do you handle that?
A: You can’t be a science cheerleader unless you have science connection. I’m the only fraud in the group. That’s the criterion. What is different, there was so much media play…NPR, CNN, TODAY Show, you can only get across so much in a video. A couple of people took a video where someone says “go science” and assumed we’re just dressing people up as cheerleaders and sending them around to yell that. (But) there’s a lot of depth with what they do.

Many are very accomplished in their fields, going on to do research. One is getting her PhD in chemistry, working on gold nanoparticles to treat pancreatic cancer. That criticism that’s ill informed is the worst type. Putting them in a bad light and they don’t deserve it. They volunteer to do this. They do it because they really believe in it. There are an estimated 3 to 4 million cheerleaders in the US. They want to reach that group, let them know it’s OK to love math and science, (to say) here’s my experience, here’s how I learned what an engineer is, here’s what my day is like. They’re all available to be pen-pal partners. As much as we preach “don’t let other people bother you or criticism bother you,” I don’t like to see ill-informed or misinformed statements.

Q: Have you encountered situations in which your expression of yourself outside the bounds of science has led to people viewing you differently--either more positively or more negatively?
A: Yes. (What) we have is mostly anecdotal…have a number for people coming to site, watching video, we try to save emails and letters that come in from moms of little girls who just want to be cheerleaders but also are talented, and the moms feel they’re talented in math and science and grow concerned about their daughters losing that for their love of cheerleading and dance and are happy to see these role models on the site.

In terms of other positive impacts, if we just look at it from public outreach, it’s been incredible because of the media’s interest. Media interest in this, the teams themselves…it’s not easy to reach Baltimore Ravens fans w positive messages about science and tech or women and science and tech, so when the Ravens repost the interviews and tweet it to their fan base, that’s very positive.

Lines at live events are pretty long with kids lining up to get autographs from the Science Cheerleaders. We always look for local or regional citizen science activity to capitalize on that attention to get those people to do something. For example in South Texas a science and engineering festival. We did our routine, a bunch of people line up for autographs, our choreographer is the reigning Miss United States. That attracts people as I talk about a local researcher who needs their help for citizen science project. (It’s) super simple to use that attention to say “hey, by the way, you’re needed. When you see this crayfish--hold up a picture--it’s considered invasive. Here’s Dr. Zen!” He (Dr. Zen) came out and talked, while they’re waiting inline, a captive audience, and we give the Website where they can get involved.

Our sister site, is now a full-size website called SciStarter, a startup company. That was named one of Philly’s top-10 tech startups last year! It aggregates all of the citizen science projects out there. We rely on that at all of the Science Cheerleader appearances.

I can do what I know how to do, but I would love some grad student or organization that does evaluations or measures outcomes and help me learn more about the metrics, direct outcomes that can be measured, and how do I do that.

DXS: Have you found that your non-science expression of creativity/activity/etc. has in any way informed your understanding of science or how you may talk about it or present it to others?
A: It’s a great question. It’s interesting because that Science Cheerleader blog that I started with and still have--it’s a very diverse audience. There are people who came because they’re reading about their favorite teams’ cheerleaders doing cool things and that ‘s great. I’d have a lot of those types coming to the site, and they’d learn, “hmm that’s interesting I didn’t realize that’s what a chemical engineer does,” then look to their right and see, “hmmm this is happening in Boston”… and take next step from passive reader to getting involved in a citizen science project. The goal is to move them to being actively engaged citizens getting them prepared aware involved in the science policy conversation. I know that sounds so farfetched but not nearly as much as a couple of years ago.

It is not easy to talk to different audiences. I used to preach “know your audience,” but I’ve learned more from my audience than they may have from me. I consider some of the science bloggers, and they’re a part of the audience. I learned they don’t like 76ers involved without science degrees, and we responded to that. What one group likes another won’t. There’s no “one size fits all.” We try to (appeal) to a wide variety of audiences coming to site….from those interested in science policy to people who come because they want more about citizen science efforts. We can point them to these things through SciStarter.

DXS: How comfortable are you expressing your femininity and in what ways? How does this expression influence people’s perception of you in, say, a scientifically oriented context? And does that impression evolve at all?
The initial impression, even through me--and I think the Science Cheerleaders would say this too, even when I was of the Sixers…(pauses)… let’s talk motivation for a minute, why most of these women choose to become professional cheerleaders, why would you do that? The bottom line is that there are very few opportunities to continue dancing and performing once you’re out of college. My personal experience--and you’ll see this in interviews--your options are so limited, and we wanted to continue performing, usually it’s dancing. We see an audition in paper, and they’re looking for people who know how to do triple pirouettes, and the opportunity to continue to perform is there.

I wish we didn’t have to wear those uniforms when I was on the Sixers. I loved every single thing about it except for some of the uniforms. I would love for the NFL and NBA to look and say, “We didn’t realize cheerleaders felt that way and tone it down,” (but) it’s not going to happen. I encourage people to read interviews to see what motivated some of the cheerleaders. I wasn’t a gung-ho Sixers fan who wanted to do this for the team, but some people almost their whole lives dreamed of being a cheerleader for their team.

In terms of embracing being feminine, I don’t know anyone who is that 100% of the time. My hair looked decent, I wore OK clothes, but I don’t walk around like that all the time. I think that the reality of the situation is there’s no one walking around looking like a professional cheerleader all the time. I doubt that the Science Cheerleaders look like that when they go into the lab, not because they want to be taken seriously but for convenience. It s a lot of work to look like that.

I wish that the people who pave the way for these Science Cheerleaders to be exploring the careers they have now--lots are supportive and embrace them but that also happens to be where the toughest critics are embedded. They know better than anyone what it feels like to have somebody work against you. I wish they’d ease up on Science Cheerleaders and let them be all that they can be. They can relate to an audience it’s not easy for us to reach. I can’t reach those little cheerleaders out there myself, but they can, maybe through pom-poms or uniforms or a connection with the moms. It does evolve

Some teams require you to be in school full time or have a full-time job. They want smart cheerleaders because you have to be out doing public speaking so if you’re not articulate or bright…pretty girls and good dancers are a dime a dozen…your success comes down to your interview.

These Science Cheerleaders are by far way more secure in their dual roles than I was. I’m not sure why or how, but when you see them at appearances, they’re looking for ways to embrace these two roles. They’ll say in their interview, I don’t care what people in my lab think about my wearing makeup and so on, and they mean it. These women walk the walk.

DXS: If you had something you could say to the younger you, back when you weren’t so comfortable with yourself about the role of expression and creativity in your chosen career path, what would you say?
A: If I had read one of these interviews when I was, say, in fifth grade, and I read one of those Science Cheerleader interviews, it would resonate w me in a different way. It might not have an impact on me personally when I was a kid…the cheerleaders on our team, we were athletes. Most cheerleaders are leaders in their schools, involved in leadership and academics, student government. The stereotype is total bunk. 

I can tell you that in some point in my life, I can think back to times, like my first big job at Discover, had I read these interviews as a kid, I may have felt more comfortable about being authentic about every aspect of me. 

To use the Pop Warner example, we set a world record with them, 1300 little cheerleaders cheering for science for five minutes. I have a sneaking suspicion that fast forward 10 years from now, they might be interviewed, by you maybe, about how they got interested in science, and they might say, when I as in 8th grade, I got called in to do this science cheer thing, and it opened my eyes to science as a valid career. If it doesn’t happen at a young age for some of these girls, they might reflect back to something they experienced science cheerleading and feel entitled to embrace all that they are and feel good about that.
See the Science Cheerleaders in action at the Science and Engineering Festival:

By Emily Willingham, DXS managing editor