Friday, September 28, 2012

As Seen on TV! Restoring Hair with LASERS!!!!!!

The author's rapidly-expanding forehead.
Anyone who watches TV, reads magazines, or flips through catalogs has seen some interesting products. Maybe they seem plausible to you, maybe they don't. However, a little investigation shows they are based less on science and well...actually working, and more on wishful thinking. At worst they're actual con-jobs, designed to separate you from your money as efficiently as possible (which I guess is a certain standard of success). As a result, we at Double X Science bring you “As Seen on TV!” In these features, we'll look at some of the products shilled on talk shows and infomercials, items lurking between the articles you read in magazines, or things you might find on the shelves of the stores where you shop.
I admit it, I'm a balding dude. My forehead is gradually taking over my entire scalp, replacing my formerly thick and curly hair with a vast expanse of pink skin. Yes, dear readers: My hair was once so thick and curly that, when I wore it long and in a ponytail, ladies would ask me for my secret. (The answer: Wash it every other day with some brand of cheap shampoo and let it air dry. Don't tell.) I don't like the fact of my impending baldness, so I'm sympathetic toward defoliation-sufferers who want to bring their hair back at any cost.

On the other hand, I don't think I'll invest in any of the hair restoration products advertised in the SkyMall catalog I picked up on my flight to my brother's wedding in San Francisco. I counted seven products in this single catalog promising to restore hair in one way or another, either reversing baldness or filling in thin patches on the scalp –- and that doesn't include hair-coloring, extensions, or other options. I won't cover all of them, but no fewer than three products pledge to bring hair back through the magic of lasers.

Ah, lasers. They may not have the mystique of magnets or the nous of “natural”, but they are a frequent ingredient in modern snake oil. (Come to think of it, one of the hair-restoration products may have contained snake oil. I don't want to ask.) But while lasers can help correct nearsightedness in some cases, perform minimally invasive surgeries, and remove hair, color my scalp skeptical about their ability to restore hair.

First, a disclaimer: I'm not a biologist, a doctor, medical researcher, or in any field related to those. I'm a physicist, so the closest I ever get professionally to this topic is the “no-hair" theorem in black hole physics. The "no-hair" theorem says that black holes have very few distinguishing characteristics: only mass and rotational rate (and technically electric charge as well, though it's hard to build up enough charge to make a difference). The analogy is that, if all humans were completely hairless, we would have a lot fewer ways to tell each other apart. In other words, this ain't my area, so bear (bare) with me!

Night on Baldhead Mountain

Hair loss can occur for a wide variety of reasons: chemotherapy, a number of unrelated diseases, even stress. However, as humans (both men and women!) age, we all tend to lose our hair to some degree. The effect is most pronounced in male pattern baldness (a bare patch on the top of the head merging over time with the growing forehead to leave a fringe around the edges of the scalp) or female pattern baldness (a general loss of hair at the top of the scalp). However, past the age of 80, nearly everyone starts losing hair, regardless of genetics, diet, or health.

The reasons, as with so many other things, are hormonal. Hair production is governed by sex hormones: most famously testosterone, but also a less well-known cousin known as dihydrotestosterone (DHT). In some people, DHT commands the follicles -- the small organs in the skin that produce and feed hair -- to shrink, producing ever-finer hair until they cease operating entirely. Thus, gradual hair loss of the usual (as opposed to disease- or circumstance-derived) variety is generally preceded by the hair itself becoming thinner and fuzzier.

My naive understanding of the biology of hair loss leads me to suspect that since hormones are the culprit behind hair loss, then any hair restoration should address those hormones in some way. That alone makes me suspicious of the laser-based products SkyMall peddles. To see why, let's look at lasers themselves.

Lasers (without sharks)

The word "laser" began as an acronym: Light Amplification by the Stimulated Emission of Radiation. The details could be an Everyday Science or Double Xplainer post in their own right, but here's the short version. The lasers used in the SkyMall products are LED lasers, meaning they are based on the underlying physics as LED lights. An electric current kicks electrons or other electric charge carriers from one type of material to another across a junction. The excess energy the electric charge sheds during this process is given off in the form of a photon, a particle of light. Since the same amount of energy is involved every time, light from LEDs is nearly monochromatic, meaning it is almost purely one color.

The "amplification" part of the name comes by putting the LED into a special kind of cavity with reflective walls. These walls set up standing waves for the light, which interfere constructively like vibrations in a guitar string, making them brighter. However, unlike guitar strings, the production of the light in lasers is a self-feeding process, resulting in the different parts of the system synchronizing until they emit photons in concert with each other. It's really interesting stuff, and while it's somewhat complicated, there's nothing really mysterious or magical about it, any more than magnets are magical.

In fact, LED lasers are so unmagical that you can buy them as cat toys. LED lasers are the inner workings of laser pointers, which you can buy very inexpensively at any number of shops.

The smell of frying follicles

One of three laser-based hair-restoration products from SkyMall.
This one features built-in headphones, so you can at least listen
to music while you sit around looking like a fool. However,
I recommend a cheaper set of headphones, since the $700
price tag is a bit steep, and you'd get the same result with
regards to hair restoration.
Laser hair removal uses intense lasers to selectively heat the follicles in the skin, hopefully avoiding damage to the rest of the skin. This process can slow down hair growth and cause the hair to fall out of the treated follicles, but it doesn't always actually stop it: the treatment must be continued for a long term. Basically, the laser is damaging the follicle.

As you can imagine, that also makes me skeptical that lasers can stimulate new hair growth. Lasers produce light...and that's it! In addition to the usual red lasers like in laser pointers, manufacturers also make infrared lasers, which are useful for surgery. While we perceive infrared as heat (which is why sunshine feels warm), I don't think merely warming the scalp is going to make hair grow faster, or else you wouldn't need lasers at all -- an electric blanket would do just as well. Too much heating and we're back at laser hair removal.

Similarly, visible-light lasers like the kind that seem to be in these SkyMall products simply produce red light. Because ordinary light bulbs produce a broad range of colors (white light is a mixture of all the visible-light wavelengths), sitting under a desk lamp would expose your scalp to red light. Yes, it wouldn't be as intense as lasers, but you could do the same trick with a laser pointer from Schtaples (the Scmoffice Schmupply Schtore), provided you have the patience to hold it against your scalp for long periods of time.

The author engages in home laser hair restoration, while his cats
meow around his feet.
So, to summarize:
  • Hair loss in its most common forms is hormonal, so it's unclear to me that light (whether laser or otherwise) has anything to do with it. Hair removal can be achieved with lasers, but that involves causing damage to hair follicles, not using anything intrinsic to light.
  • Lasers are simply very monochromatic light sources, that use synchronization of atoms on the microscopic level to do their business. There's nothing in a laser that isn't in ordinary light bulbs, though you can make things far more intense with a laser. However, high intensity brings us back to laser hair removal, not restoration.
  • As always, if a product sounds miraculous, it's probably bunkum. If all it took to regrow hair was a glorified laser pointer, nobody would be bald! LED lasers are cheap and ubiquitous; we could all restore our hair without paying a company $700 (and listen to the music on inexpensive headphones, to boot).
Now if you'll pardon me, I'll get back to shining this laser pointer at my scalp.

Wednesday, September 26, 2012

Are your children always on your mind? They may be IN your mind

Hmm. Do I have any cells in there?
On Mother's Day this year, we told you why, if you have biological children, those children are literally a part of you for life thanks to a phenomenon called microchimerism. When a woman is pregnant, some of the fetal cells slip past the barrier between mother and fetus and take up residence in the mother. What researchers hadn't turned up in humans before now was that some of those cells can end up in the mother's brain. Once there, according to a study published today in PLoS ONE, they can stick around for decades and, the researchers suggest, might have a link to Alzheimer's disease. Note that is a big "might."

The easiest way to tell if a fetal cell's made it into a maternal tissue is to look for cells carrying a Y chromosome or a Y gene sequence (not all fetuses developing as male carry a Y chromosome, but that's a post for another time). As you probably know, most women don't carry a Y chromosome in their own cells (but some do; another post for another time). In this study, researchers examined postmortem brain tissue from 26 women who had no detectable neurological disease and 33 women who'd had Alzheimer's disease; the women's ages at death ranged from 32 to 101. They found that almost two thirds (37) of all of the women tested had evidence of the Y chromosome gene in their brains, in several brain regions. The blue spots in the image below highlight cells carrying these "male" genes a woman's brain tissue.

Photo Credit: Chan WFN, Gurnot C, Montine TJ, Sonnen JA, Guthrie KA, et al. (2012)
Male Microchimerism in the Human Female Brain. 
PLoS ONE 7(9): e45592. doi:10.1371/journal.pone.0045592

The researchers also looked at whether or not these blue spots were more (or less) frequent in the brains of women with Alzheimer's disease compared to women who'd had no known neurological disease. Although their results hint at a possible association, it wasn't significant. Because the pregnancy history of the women was largely unknown, there's no real evidence here that pregnancy can heighten your Alzheimer's risk or that being pregnant with or bearing a boy can help or hinder. As I discuss below, you can end up with some Y chromosome-bearing cells without ever having been pregnant.

Also, age could be an issue. Based on the reported age ranges of the group, the women without Alzheimer's were on average younger at death (70 vs 79), with the youngest being only 32 (the youngest in Alzheimer's group at death was 54). No one knows if the women who died at younger ages might later have developed Alzheimer's. 

Indeed, most of this group--Alzheimer's or not--had these Y-chromosome cells present in the brain. The authors say that 18 of the 26 samples from women who'd had no neurologic disease were positive for these "male" cells--that's 69%--while 19 of the 33 who had Alzheimer's were. That's 58%. In other words, a greater percentage of women who'd not had Alzheimer's in life were carrying around these male-positive cells compared to women who had developed Alzheimer's. The age difference might also matter here, though, if these microchimeric cells tend to fade with age, although the researchers did get a positive result in the brain of a woman who was 94 when she died.

Thus, the simple fact of having male-positive cells (ETA: or not enough of them) in the brain doesn't mean You Will Develop Alzheimer's, which is itself a complex disease with many contributing factors. The researchers looked at this potential link because some studies have found a higher rate of Alzheimer's among women who've been pregnant compared to women who have not and an earlier onset among women with a history of pregnancy. The possible reasons for this association range from false correlation to any number of effects of pregnancy, childbearing, or parenting.

Nothing about this study means that migration of fetal cells to the brain is limited to cells carrying Y chromosomes. It's just that in someone who is XX, it's pretty straightforward to find a Y chromosome gene. Finding a "foreign" X-linked gene in an XX person would be much more difficult. Also, a woman doesn't have to have borne a pregnancy to term to have acquired these fetal cells. As the authors observe, even women without sons can have these Y-associated cells from pregnancies that were aborted or ended prematurely or from a "vanished" male twin in a pregnancy that did go to term. 

In fact, a woman doesn't even have to have ever been pregnant at all to be carrying some cells with Y chromosomes. Another way you can end up with Y chromosome cells in an XX chromosome body is--get this--from having an older male sibling who, presumably, left a few cellular gifts behind in the womb where you later developed. As the oldest sibling, I can only assume I could have done the same for the siblings who followed me. So, if you've got an older sibling and have been pregnant before--could you be a double microchimera? 

But wait. You could even be a triple microchimera! This microchimerism thing can be a two-way street. If you're a woman with biological children, those children already carry around part of you in the nuclear DNA you contributed and all of the mitochondria (including mitochondrial DNA) in all of their cells. Yes, they get more DNA from you than from the father. But they might also be toting complete versions of your cells, just as you have cells from them, although fetus-->mother transfer is more common than mother-->fetus transfer. The same could have happened between you and your biological mother. If so, a woman could potentially be living with cells from her mother, older sibling, and her children mixed in with her own boring old self cells.

The triple microchimera thing might be a tad dizzying, particularly the idea that you could be walking around with your mother's and sibling's cells hanging out in You, a whole new level of family relationships. But if you're a biological mother, perhaps you might find it comforting to know that a cellular part of you may accompany your child everywhere, even as your child is always on your mind--and possibly in it, too.

Monday, September 24, 2012

Towards better drug development, fewer side effects?


You may have had the experience: A medication you and a friend both take causes terrible side effects in you, but your friend experiences none. (The running joke in our house is, if a drug has a side-effect, we've had it.) How does that happen, and why would a drug that's meant to, say, stabilize insulin levels, produce terrible gastrointestinal side effects, too? A combination of techy-tech scientific approaches might help answer those questions for you -- and lead to some solutions.

It’s no secret I love lab technology. I’m a technophile. A geek. I call my web site “Biotechnically Speaking.” So when I saw this paper in the September issue of Nature Biotechnology, well, I just had to write about it.

The paper is entitled, “Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators.” If you read that and your eyes glazed over, don’t worry –- the article is way more interesting than its title. 

Those trees on the right are called SPADE trees. They map cellular responses to different  stimuli in a collection of human blood cells. Credit: (c) 2012 Nature America [Nat Biotechnol, 30:858--67, 2012]
Here’s the basic idea: The current methods drug developers use to screen potential drug compounds –- typically a blend of high-throughput imaging and biochemical assays – aren’t perfect. If they were, drugs wouldn’t fail late in development. Stanford immunologist Garry Nolan and his team, led by postdoc Bernd Bodenmiller (who now runs his own lab in Zurich), figured part of that problem stems from the fact that most early drug testing is done on immortalized cell lines, rather than “normal” human cells. Furthermore, the tests that are run on those cells aren’t as comprehensive as they could be, meaning potential collateral effects of the compounds might be missed. Nolan wanted to show that flow cytometry, a cell-analysis technique frequently used in immunology labs, can help reduce that failure rate by measuring drug impacts more holistically. 

Nolan is a flow cytometry master. As he told me in 2010, he’s been using the technique for more than three decades, and even used a machine now housed in the Smithsonian.

In flow cytometry, researchers treat cells with reagents called antibodies, which are immune system proteins that recognize and bind to specific proteins on cell surfaces. Each type of cell has a unique collection of these proteins, and by studying those collections, it is possible to differentiate and count the different populations.

Suppose researchers wanted to know how many T cells of a specific type were present in a patient’s blood. They might treat those cells with antibodies that recognize a protein known as CD3 to pick those out. By adding additional antibodies, they can then select different T-cell subpopulations, such as CD4-positive helper T cells and CD8-positive cytotoxic T cells, both of which help you mount immune responses.

Cells of the immune system
Source: http://stemcells.nih.gov/info/scireport/chapter6.asp
In a basic flow cytometry experiment, each antibody is labeled with a unique fluorescent dye –- the antibody targeting CD3 might be red, say, and the CD4 antibody, green. The cells stream past a laser, one by one. The laser (or lasers –- there can be as many as seven) excites the dye molecules decorating the cell surface, causing them to fluoresce. Detectors capture that light and give a count of how many total cells were measured and the types of cells. The result is a kind of catalog of the cell population. For immune cells, for example, that could be the number of T cells, B cells (which, among other things, help you "remember" previous invaders), and macrophages (the big cells that chomp up invaders and infected cells). By comparing the cellular catalogs that result under different conditions, researchers gain insight into development, disease, and the impact of drugs, among other things.

But here’s the problem: Fluorescent dyes aren’t lasers, producing light of exactly one particular color. They absorb and emit light over a range of colors, called a spectrum. And those spectra can overlap, such that when a researcher thinks she’s counting CD4 T cells, she may actually be counting some macrophages. That overlap leads to all sorts of experimental optimization issues. An exceptionally talented flow cytometrist can assemble panels of perhaps 12 or so dyes, but it might take months to get everything just right.

That’s where the mass cytometry comes in. Commercialized by DVS Sciences, mass cytometry is essentially the love-chid of flow cytometry and mass spectrometry, combining the one-cell-at-a-time analysis of the former with the atomic precision of the latter. Mass spectrometry identifies molecules based on the ratio of their mass to their charge. In DVS’ CyTOF mass cytometer, a flowing stream of cells is analyzed not by shining a laser on them, but by nuking them in superhot plasma. The nuking reduces the cell to its atomic components, which the CyTOF then measures.

Specifically, the CyTOF looks for heavy atoms called lanthanides, elements found in the first of the two bottom rows of the periodic table, like gadolinium, neodymium, and europium. These elements never naturally occur in biological systems and so make useful cellular labels. More to the point, the mass spectrometer is specific enough that these signals basically don't overlap. The instrument will never confuse gadolinium for neodymium, for instance. Researchers simply tag their antibodies with lanthanides rather than fluorophores, and voila! Instant antibody panel, no (or little) optimization required.

Periodic Table of Cupcakes, with lanthanides in hot pink frosting.
Source: http://www.buzzfeed.com/jpmoore/the-periodic-table-of-cupcakes
Now back to the paper. Nolan (who sits on DVS Sciences' Scientific Advisory Board) and Bodenmiller wanted to see if mass cytometry could provide the sort of high-density, high-throughput cellular profiling that is required for drug development. The team took blood cells from eight donors, treated them with more than two dozen different drugs over a range of concentrations, added a dozen stimuli to which blood cells can be exposed in the body, and essentially asked, for each of the pathways we want to study, in each kind of cell in these patients’ blood, what did the drug do?

To figure that out, they used a panel of 31 lanthanides –- 10 to sort out the cell types they were looking at in each sample, 14 to monitor cellular signaling pathways, and 7 to identify each sample.

I love that last part, about identifying the samples. The numbers in this experiment are kind of staggering: 12 stimuli x 8 doses x 14 cell types x 14 intracellular markers per drug, times 27 drugs, is more than half-a-million pieces of data. To make life easier on themselves, the researchers pooled samples 96 at a time in individual tubes, adding a “barcode” to uniquely identify each one. That barcode (called a “mass-tag cellular barcode,” or MCB) is essentially a 7-bit binary number made of lanthanides rather than ones and zeroes: one sample would have none of the 7 reserved markers (0000000); one sample would have one marker (0000001); another would have another (0000010); and so on. Seven lanthanides produce 128 possible combinations, so it’s no sweat to pool 96. They simply mix those samples in a single tube and let the computer sort everything out later.

This graphic summarizes a boatload of data on cell signaling pathways impacted by different drugs.
Credit: (c) 2012 Nature America [Nat Biotechnol, 30:858--67, 2012]
When all was said and done, the team was able to draw some conclusions about drug specificity, person-to-person variation, cell signaling, and more. Basically, and not surprisingly, some of the drugs they looked at are less specific than originally thought -– that is, they affect their intended targets, but other pathways as well. That goes a long way towards explaining side effects. But more to the point, they proved that their approach may be used to drive drug-screening experiments.

And I get to write about it. 

Friday, September 21, 2012

Is the bar high enough for screening breast ultrasounds for breast cancer?

The stormy landscape of the breast, as seen
on ultrasound. At top center (dark circle) is
a small cyst. Source: Wikimedia Commons.
Credit: Nevit Dilmen.

By Laura Newman, contributor

In a unanimous decision, FDA has approved the first breast ultrasound imaging system for dense breast tissue “for use in combination with a standard mammography in women with dense breast tissue who have a negative mammogram and no symptoms of breast cancer.” Patients should not interpret FDA’s approval of the somo-v Automated Breast Ultrasound System as an endorsement of the device as necessarily beneficial for this indication and this will be a thorny concept for many patients to appreciate.

If the approval did not take place in the setting of intense pressure to both inform women that they have dense breasts and lobbying to roll out all sorts of imaging studies quickly, no matter how well they have been studied, it would not be worth posting.

Dense breasts are worrisome to women, especially young women (in their 40s particularly) because they have proved a risk factor for developing breast cancer. Doing ultrasound on every woman with dense breasts, though, who has no symptoms, and a normal mammogram potentially encompasses as many as 40% of women undergoing screening mammography who also have dense breasts, according to the FDA’s press release. Dense breast tissue is most common in young women, specifically women in their forties, and breast density declines with age.

The limitations of mammography in seeing through dense breast tissue have been well known for decades and the search has been on for better imaging studies. Government appointed panels have reviewed the issue and mammography for women in their forties has been controversial. What’s new is the “Are You Dense?” patient movement and legislation to inform women that they have dense breasts.

Merits and pitfalls of device approval
The approval of breast ultrasound hinges on a study of 200 women with dense breast evaluated retrospectively at 13 sites across the United States with mammography and ultrasound. The study showed a statistically significant increase in breast cancer detection when ultrasound was used with mammography.

Approval of a device of this nature (noninvasive, already approved in general, but not for this indication) does not require the company to demonstrate that use of the device reduces morbidity or mortality, or that health benefits outweigh risks.

Eitan Amir, MD, PhD, medical oncologist at Princess Margaret Hospital, Toronto, Canada, said: “It’s really not a policy decision. All this is, is notice that if you want to buy the technology, you can.”

That’s clearly an important point, but not one that patients in the US understand. Patients hear “FDA approval” and assume that means a technology most certainly is for them and a necessary add-on. This disconnect in the FDA medical device approval process and in what patients think it means warrants an overhaul or at the minimum, a clarification for the public.

Materials for FDA submission are available on the FDA website, including the study filed with FDA and a PowerPoint presentation, but lots of luck, finding them quickly. “In the submission by Sunnyvale CA uSystems to FDA, the company stated that screening reduces lymph node positive breast cancer,” noted Amir. “There are few data to support this comment.”

Is cancer detection a sufficient goal?
In the FDA study, more cancers were identified with ultrasound. However, one has to question whether breast cancer detection alone is meaningful in driving use of a technology. In the past year, prostate cancer detection through PSA screening has been attacked because several studies and epidemiologists have found that screening is a poor predictor of who will die from prostate cancer or be bothered by it during their lifetime. We seem to be picking up findings that don’t lead to much to worry about, according to some researchers. Could new imaging studies for breast cancer suffer the same limitation? It is possible.

Another question is whether or not the detected cancers on ultrasound in the FDA study would have been identified shortly thereafter on a routine mammogram. It’s a question that is unclear from the FDA submission, according to Amir.

One of the problems that arises from excess screening is overdiagnosis, overtreatment, and high-cost, unaffordable care. An outcomes analysis of 9,232 women in the US Breast Cancer Surveillance Consortium led by Gretchen L. Gierach, PhD, MPH, at the National Institutes of Health MD, and published online in the August 21 Journal of the National Cancer Institute, revealed: “High mammographic breast density was not associated with risk of death from breast cancer or death from any cause after accounting for other patient and tumor characteristics.” –Gierach et al., 2012

Proposed breast cancer screening tests
Meanwhile, numerous imaging modalities have been proposed as an adjunct to mammography and as potential replacements for mammography. In 2002, proponents of positron emission tomography (PET) asked Medicare to approve pet scans for imaging dense breast tissue, especially in Asian women. The Medicare Coverage Advisory Commission heard testimony, but in the end, Medicare did not approve it for the dense-breast indication.

PET scans are far less popular today, while magnetic resonance imaging (AKA MR, MRI) and imaging have emerged as as adjuncts to mammography for women with certain risk factors. Like ultrasound, the outcomes data is not in the bag for screening with it.

In an interview with Monica Morrow, MD, Chief of Breast Surgery at Memorial Sloan-Kettering Cancer Center, New York, several months ago concerning the rise in legislation to inform women about dense breasts, which frequently leads to additional imaging studies, she said: “There is no good data that women with dense breasts benefit from additional MR screening." She is not the only investigator to question potentially deleterious use of MR ahead of data collection and analysis. Many breast researchers have expressed fear that women will opt for double mastectomies, based on MR, that in the end, may have been absolutely unnecessary.

"There is one clear indication for MR screening," stressed Morrow, explaining that women with BRCA mutations should be screened with MRI. "Outside of that group, there was no evidence that screening women with MR was beneficial."

At just about every breast cancer meeting in the past two years, the benefits and harms of MR and other proposed screening modalities come up, and there is no consensus in the field.  It  should be noted, though, that plenty of breast physicians are skeptical about broad use of MR– not just generalists outside of the field. In other words, it is not breast and radiology specialists versus the US Preventive Services Task Force - a very important message for patients to understand.

One thing is clear: as these new technologies gain FDA approval, it will be a windfall for industry. If industry is successful and doctors are biased to promoting these tests, many may offer them on the estimated 40% of women with dense breasts who undergo routine mammograms, as well as other women evaluated as having a high lifetime risk.  The tests will be offered in a setting of unclear value and uncertain harms. Even though FDA has not approved breast MRI for screening dense breasts, breast MR is being used off label and it is far more costly than mammography.

When patients raise concerns about the unaffordability of medical care, they should be counseled about the uncertain benefit and potential harms of such a test. That may be a tall bill for most Americans to consider: it’s clear that the more is better philosophy is alive and well. Early detection of something, anything, even something dormant, going nowhere, is preferable to skipping a test, and risking who-knows-what, and that is something, most of us cannot imagine at the outset.

[Today's post is from Patient POVthe blog of Laura Newman, a science writer who has worked in health care for most of her adult life, first as a health policy analyst, and as a medical journalist for the last two decades. She was a proud member of the women’s health movement. She has a longstanding interest in what matters to patients and thinks that patients should play a major role in planning and operational discussions about healthcare. Laura’s news stories have appeared in Scientific American blogs, WebMD Medical News, Medscape, Drug Topics, Applied Neurology, Neurology Today, the Journal of the National Cancer Institute, The Lancet, and BMJ, and numerous other outlets. You can find her on Twitter @lauranewmanny.]

Ed note: The original version of this post contains a posted correction that is incorporated into the version you've read here.

The opinions in this article do not necessarily conflict with or reflect those of the DXS editorial team. 

Wednesday, September 19, 2012

Striking a balance between health and sustainability: a study inspired by a love for sushi



Sushi for sale (Source)
by Jeanne Garbarino, DXS biology editor

A conservation scientist walks into a [sushi] bar…
You've probably heard that eating a diet including fish, especially fatty fish, is good for us. Fish can be a source of high quality, lean protein, and also provide heart-healthy omega-3 fatty acids. However, there are risks associated with eating some types of fish. For instance, fish that are at the top of the food chain or have a long lifespan (or both!) can accumulate high levels of mercury or chemicals called polychlorinated biphenyls (PCBs).  Exposure to high amounts of these compounds could be particularly harmful for pregnant/nursing women or young children.
On the other hand, there is the issue of sustainability. We are seeing a wide-scale collapse of many marine fish populations, which is primarily the result of overfishing.   While there are conservation efforts in place to help consumers make eco-friendly choices, it is not clear if raising consumer awareness is impacting fishing or marine farming practices. Furthermore, many consumers will choose fish based on their nutritional value and safety without really considering ecological consequences.
In an attempt to better educate consumers on both nutrition and sustainability with regard to making the best seafood choices, Leah Gerber, professor of Ecology, Evolution and Environmental Science at Arizona State University, has evaluated current fish “eco-ranking” schemes. In a study recently published (PDF) in Frontiers in Ecology and the Environment, Dr. Gerber provides a model that quantifies both the health benefits and sustainability level of individual fish species.
Interestingly, her group found that fish with the highest health benefits, determined by omega-3 fatty acid content, generally had low mercury levels. Similarly, fish that are unsustainable -- meaning that fishing threatens their existence -- tended to have higher levels of mercury, and lower omega-3 fatty acid amounts.  Basically, fish populations that are not threatened by overfishing are generally heart healthy and have low mercury. A win-win!
The novel thing about this study is that it is the first to consider multiple types of sustainability rankings as well as health impacts, and Dr. Gerber is taking her message to the streets. It is her hope that she and her colleagues will be able to develop tools so that consumers can easily make seafood choices that are both good for you and good for the environment.
But the coolest thing about this study is that Dr. Gerber is not a 'fisheries person', per se.  However, her passion for learning about human impact on the natural environment combined with her love of sushi prompted a closer look at the fishing industries and how to make good choices when it comes to seafood.
This is an excellent example of how a scientist is applying her knowledge to promote science in one of its most relatable forms –- eating!  I mean, we all have to eat, and it is particularly awesome when we can do so in the most educated way possible. Kudos to Dr. Gerber for taking this on since we all benefit from knowing.  

The opinions expressed in this article neither necessarily reflect nor conflict with those of the DXS editorial team.